Abstract

For the purpose of nuclear safety analysis, a reactive flow solver has been developed to determine the hazardous potential of large-scale hydrogen explosions. Without using empirical transition criteria, the whole combustion process including deflagration-to-detonation transition (DDT) is computed within a single solver framework. In this paper, we present massively parallelized three-dimensional explosion simulations in a full-scale pressurized water reactor (PWR) of the Konvoi type. Several generic DDT scenarios in globally lean hydrogen–air mixtures are examined to assess the importance of different input parameters. It is demonstrated that the explosion process is highly sensitive to mixture composition, ignition location, and thermodynamic initial conditions. Pressure loads on the confining structure show a profoundly dynamic behavior depending on the position in the containment. Computational cost can effectively be reduced through adaptive mesh refinement (AMR).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call