Abstract

For the purpose of nuclear safety analysis, a reactive flow solver has been developed to determine the hazard potential of large-scale hydrogen explosions. Without using empirical transition criteria, the whole combustion process (including DDT) is computed within a single solver framework. In this paper, we present massively parallelized three-dimensional explosion simulations in a full-scale pressurized water reactor of the Konvoi type. Several generic DDT scenarios in globally lean hydrogen-air mixtures are examined to assess the importance of different input parameters. It is demonstrated that the explosion process is highly sensitive to mixture composition, ignition location and thermodynamic initial conditions. Pressure loads on the confining structure show a profoundly dynamic behavior depending on the position in the containment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.