Abstract
Computational fluid dynamics methods play an increasingly important role in aircraft design and development. Some examples are conditions that cannot be tested before a flight test. To rely on these methods, it is essential that they are assessed and evaluated with a state-of-the-art wind tunnel test and/or in-flight data. In a previous project, Cranked-Arrow Wing Aerodynamics Project International, it was reported that all computational fluid dynamics methods failed to some degree in the transonic regime where shock–vortex interaction phenomena were present. Detailed analysis of surface pressure distribution showed that computational fluid dynamics was not able replicate the correct flowfield and produce acceptable results. This paper aims to restudy those transonic flight conditions for which computational fluid dynamics underperforms and to try to determine or shed light on the extent to which surface effects contribute to the computational fluid dynamics predictions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have