Abstract

In symptomatic intracranial atherosclerotic stenosis (ICAS), its hemodynamic impact may affect the risk of stroke recurrence, in addition to the degree of luminal stenosis. We therefore conducted a pilot study to evaluate the feasibility to delineate the hemodynamic impact of symptomatic ICAS lesions using computational fluid dynamics (CFD) models reconstructed based on computed tomography angiography (CTA) source images. Three-dimensional CFD models were reconstructed based on routine CTA source images of patients with a symptomatic ICAS lesion. The anatomic features and hemodynamic impact of target ICAS lesions were evaluated on the CFD models. The hemodynamic impact of a lesion was evaluated using distal to proximal pressure ratio (PR) and pressure gradient (PG) across the lesion. PG was defined as pressure drop across the lesion divided by length of the lesion. Among the 10 cases recruited, CTA source images of 9 cases were successfully processed to CFD models. The hemodynamic characteristics of the ICAS lesions could be quantitatively evaluated on the CFD models, such as the pressures, blood flow velocities, wall shear stress and shear strain rates. The median PR was 0.58 and the median PG was 93 mmHg/cm. PRs and PGs varied in cases with similar degrees of stenoses with different lesion lengths and proximal vessel diameters. This pilot study demonstrated the feasibility to quantitatively assess the hemodynamic impact of ICAS using CFD models reconstructed based on routine CTA. Further studies are required to improve the models built in this pilot study, and to evaluate the ultimate value of this technique in clinical assessment and risk stratification of patients with symptomatic ICAS.

Highlights

  • In symptomatic intracranial atherosclerotic stenosis (ICAS), its hemodynamic impact may affect the risk of stroke recurrence, in addition to the degree of luminal stenosis

  • Noninvasive fractional flow reserve (FFR), which is the distal to proximal pressure ratio (PR) across a stenosis, measured through computational fluid dynamics (CFD) reconstruction of coronary computed tomography angiography (CTA), has been identified of high diagnostic accuracy for the hemodynamic significance of stenosed coronary arteries as compared with FFR obtained invasively, and this is promising in guiding patient selection for percutaneous coronary intervention [8,9]

  • In the present pilot study, we evaluated the feasibility to discern hemodynamic impact of ICAS using CFD models reconstructed from routinely obtained CTA images with a small sample size, to pave the way for generalized application of this technique in larger clinical studies in the near future

Read more

Summary

Introduction

In symptomatic intracranial atherosclerotic stenosis (ICAS), its hemodynamic impact may affect the risk of stroke recurrence, in addition to the degree of luminal stenosis. We conducted a pilot study to evaluate the feasibility to delineate the hemodynamic impact of symptomatic ICAS lesions using computational fluid dynamics (CFD) models reconstructed based on computed tomography angiography (CTA) source images. Noninvasive fractional flow reserve (FFR), which is the distal to proximal pressure ratio (PR) across a stenosis, measured through CFD reconstruction of coronary computed tomography angiography (CTA), has been identified of high diagnostic accuracy for the hemodynamic significance of stenosed coronary arteries as compared with FFR obtained invasively, and this is promising in guiding patient selection for percutaneous coronary intervention [8,9]. In the present pilot study, we evaluated the feasibility to discern hemodynamic impact of ICAS using CFD models reconstructed from routinely obtained CTA images with a small sample size, to pave the way for generalized application of this technique in larger clinical studies in the near future

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call