Abstract

Numerical simulation is growing in its importance toward the design, testing and evaluation of medical devices. Computational fluid dynamics and finite element analysis allow improved calculation of stress, heat transfer, and flow to better understand the medical device environment. Current research focuses not only on improving medical devices, but also on improving the computational tools themselves. As methods and computer technology allow for faster simulation times, iterations and trials can be performed faster to collect more data. Given the adverse events associated with long-term inferior vena cava (IVC) filter placement, IVC filter design and device evaluation are of paramount importance. This work reviews computational methods used to develop, test, and improve IVC filters to ultimately serve the needs of the patient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call