Abstract

PurposeRecent work has demonstrated the possibility of selectively sintering polymer powders with radio frequency (RF) radiation as a means of rapid, volumetric additive manufacturing. Although RF radiation can be used as a volumetric energy source, non-uniform heating resulting from the sample geometry and electrode configuration can lead to adverse effects in RF-treated samples. This paper aims to address these heating uniformity issues by implementing a computational design strategy for doped polymer powder beds to improve the RF heating uniformity.Design/methodology/approachTwo approaches for improving the RF heating uniformity are presented with the goal of developing an RF-assisted additive manufacturing process. Both techniques use COMSOL Multiphysics® to predict the temperature rise during simulated RF exposure for different geometries. The effectiveness of each approach is evaluated by calculating the uniformity index, which provides an objective metric for comparing the heating uniformity between simulations. The first method implements an iterative heuristic tuning strategy to functionally grade the electrical conductivity within the sample. The second method involves reorienting the electrodes during the heating stage such that the electric field is applied in two directions.FindingsBoth approaches are shown to improve the heating uniformity and predicted part geometry for several test cases when applied independently. However, the greatest improvement in heating uniformity is demonstrated by combining the approaches and using multiple electrode orientations while functionally grading the samples.Originality/valueThis work presents an innovative approach for overcoming RF heating uniformity issues to improve the resulting part geometry in an RF-assisted, volumetric additive manufacturing method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call