Abstract
Computational screens for oxygen evolution reaction (OER) catalysts based on Sabatier analysis have seen great success in recent years; however, the concept of using chemical descriptors to form a reaction coordinate has not been put under scrutiny for complex systems. In this paper, we examine critically the use of chemical descriptors as a method for conducting catalytic screens. Applying density functional theory calculations to a two-center metal oxide model system, we show that the Sabatier analysis is quite successful for predicting activities and capturing the chemical periodic trends expected for the first-row transition metal series, independent of the proposed mechanism. We then extend this analysis to heterodimer metallic systems—metal oxide catalysts with two different catalytically active metal centers—and find signs that the Sabatier analysis may not hold for these more complex systems. By performing a principal component analysis on the computed redox potentials, we show (1) that a single c...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.