Abstract

Indolizines are heteroaromatic compounds, and their synthetic analogues have reportedly showed promising pharmacological properties. In this study, a series of synthetic 7-methoxy-indolizine derivatives were synthesised, characterised and evaluated for in vitro whole-cell anti-tuberculosis (TB) screening against susceptible (H37Rv) and multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) using the resazurin microplate assay method. The cytotoxicity was evaluated using the MTT assay. In silico molecular-docking study was conducted for compounds 5a-j against enoyl-[acyl-carrier] protein reductase, a key enzyme of the type II fatty acid synthesis that has attracted much interest for the development of novel anti-TB compounds. Thereafter, molecular dynamic (MD) simulation was undertaken for the most active inhibitors. Compounds 5i and 5j with the methoxy functional group at the meta position of the benzoyl group, which was at the third position of the indolizine nucleus, demonstrated encouraging anti-TB activity against MDR strains of MTB at 16 μg/mL. In silico studies showed binding affinity within the range of 7.07–8.57 kcal/mol, with 5i showing the highest binding affinity. Hydrogen bonding, π-π- interactions, and electrostatic interactions were common with the active site. Most of these interactions occurred with the catalytic amino acids (Pro193, Tyr158, Phe149, and Lys165). MD simulation showed that 5j possessed the highest binding affinity toward the enzyme, according to the two calculation methods (MM/PBSA and MM/GBSA). The single-crystal X-ray studies of compounds 5c and 5d revealed that the molecular arrangements in these two structures were mostly guided by C-H···O hydrogen-bonded dimeric motifs and C-H···N hydrogen bonds, while various secondary interactions (such as π···π and C-H···F) also contributed to crystal formation. Compounds 5a, 5c, 5i, and 5j exhibited no toxicity up to 500 μg/mL. In conclusion, 5i and 5j are promising anti-TB compounds that have shown high affinity based on docking and MD simulation results.

Highlights

  • Mycobacterium tuberculosis (MTB) is the bacterial pathogen that underlies the infectious disease known as tuberculosis (TB)

  • Based on the last 40 years of academic and pharmaceutical industry inventions, only bedaquiline (1) was the first novel anti-TB drug permitted by the United States Food and Drug Administration (US FDA) authority in December 2012 for the treatment of multi-drug-resistant tuberculosis (MDR-TB) [7], while delamanid (2) was the second anti-TB agent to be approved by the European Medicines Agency (EMA) in late 2013 [8] (Fig 1)

  • Novel compounds 5c, 5f, and 5j were prepared using a green chemistry approach, and their molecular structures were confirmed by Fourier-transform infrared (FT-IR), nuclear magnetic resonance (NMR) (1H and 13C), Liquid chromatography (LC)-mass spectrometry (MS), and elemental analysis

Read more

Summary

Introduction

Mycobacterium tuberculosis (MTB) is the bacterial pathogen that underlies the infectious disease known as tuberculosis (TB). New TB cases are reported worldwide and human immunodeficiency virus (HIV)infected persons are up to 37 times more vulnerable to developing TB [2]. The development of multi-drug-resistant (MDR)-TB, extensively drug-resistant (XDR)-TB, and totally drug-resistant (TDR)-TB [3], as well as co-infections with acquired immunodeficiency syndrome (AIDS) and the risks involved in cases of TB among patients with diabetes mellitus [4], has resulted in a grave situation worldwide. Treating MDR-TB and XDR-TB is difficult, as second-line drugs have become far less effective [5]. This problem has been made worse by the evolution of TDR MTB strains [6] that are untreatable using the existing arsenal of anti-TB drugs. Based on the last 40 years of academic and pharmaceutical industry inventions, only bedaquiline (1) was the first novel anti-TB drug permitted by the United States Food and Drug Administration (US FDA) authority in December 2012 for the treatment of MDR-TB [7], while delamanid (2) was the second anti-TB agent to be approved by the European Medicines Agency (EMA) in late 2013 [8] (Fig 1)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.