Abstract

The computational complexity of the solutions $h$ to the ordinary differential equation $h(0)=0$, $h'(t) = g(t, h(t))$ under various assumptions on the function $g$ has been investigated. Kawamura showed in 2010 that the solution $h$ can be PSPACE-hard even if $g$ is assumed to be Lipschitz continuous and polynomial-time computable. We place further requirements on the smoothness of $g$ and obtain the following results: the solution $h$ can still be PSPACE-hard if $g$ is assumed to be of class $C^1$; for each $k\ge2$, the solution $h$ can be hard for the counting hierarchy even if $g$ is of class $C^k$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.