Abstract

A robust technique for microwave design optimization is presented. It is based on variable-fidelity electromagnetic (EM) simulations where the approximate optimum of the “coarser” model becomes an initial design for finding the optimum of the “finer” one. The algorithm automatically switches between the models of different fidelity taking into account the computational budget assumed for the design process. Additional mechanisms enhancing the algorithm include: frequency scaling to reduce the misalignment between the models of different fidelity, as well as the local response surface approximation to reduce the number of EM simulations. The presented technique is particularly suitable for problems where simulation-driven design is the only option, for example, for wideband antennas and dielectric resonator filters. Our method is demonstrated using two filters and one antenna example. In all cases, the optimal design is obtained at a low computational cost corresponding to a few high-fidelity simulations of the structure. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.