Abstract

Two Hensel-type univariate polynomial Greatest Common Divisor (GCD) algorithms are presented and compared. The regular linear Hensel construction is shown to be generally more efficient than the Zassenhaus quadratic construction. The UNIGCD algorithm for UNIvariate polynomial GCD computations, based on the regular Hensel construction is then presented and compared with the Modular algorithm based on the Chinese Remainder Algorithm. From both an analytical and an experimental point of view, the UNIGCD algorithm is shown to be preferable for many common univariate GCD computations. This is true even for dense polynomials, which was considered to be the most suitable case for the application of the Modular algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.