Abstract

Gaseous titanium hydroxide and oxyhydroxide species were studied with quantum chemical methods. The results are used in conjunction with an experimental transpiration study of titanium dioxide (TiO2) in water vapor-containing environments at elevated temperatures to provide a thermodynamic description of the Ti(OH)4(g) and TiO(OH)2(g) species. The geometry and harmonic vibrational frequencies of these species were computed using the coupled-cluster singles and doubles method with a perturbative correction for connected triple substitutions [CCSD(T)]. For the OH bending and rotation, the B3LYP density functional theory was used to compute corrections to the harmonic approximations. These results were combined to determine the enthalpy of formation. Experimentally, the transpiration method was used with water contents from 0 to 76 mol % in oxygen or argon carrier gases for 20-250 h exposure times at 1473-1673 K. Results indicate that oxygen is not a key contributor to volatilization, and the primary reaction for volatilization in this temperature range is TiO2(s) + H2O(g) = TiO(OH)2(g). Data were analyzed with both the second and third law methods using the thermal functions derived from the theoretical calculations. The third law enthalpy of formation at 298.15 K for TiO(OH)2(g) at 298 K was -838.9 ± 6.5 kJ/mol, which compares favorably to the theoretical calculation of -838.7 ± 25 kJ/mol. We recommend the experimentally derived third law enthalpy of formation at 298.15 K for TiO(OH)2, the computed entropy of 320.67 J/mol·K, and the computed heat capacity [149.192 + (-0.02539)T + (8.28697 × 10-6)T2 + (-15614.05)/T + (-5.2182 × 10-11)/T2] J/mol-K, where T is the temperature in K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call