Abstract

PurposeThe quality of lost foam casted engineering components is directly influenced by the characteristics of the respective ceramic shell mold (CSM) and hence casting pattern. In this present work, rapid prototyping (RP) was used to fabricate the lattice structured patterns (LSPs) to reduce the defects and cracks in CSM during the heating stage.Design/methodology/approachThe quality of the LSPs was accessed by measuring the dimensional accuracy. Further, the thermal stress in the CSM during the heating of porosity varied LSPs was analyzed using ANSYS software package 16.0. The Ni-alloy casting was fabricated by using the designed LSP and compared with its respective CAD model to access its quality.FindingsThe obtained results revealed that the Wigner–Seitz LSPs retained high accuracy and minimized the stress for defect-free CSM. Also, the thermal stress generated in the CSM depends upon the porosity coefficient of the LSP. Hence the interplay with porosity coefficient of LSPs leads to the formation of defect free CSM and hence high quality casting.Originality/valueRP was used to develop LSPs and investigated the dependency of unit cell parameters on the accuracy of the final casting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.