Abstract

Tissue-specific gene expression is generally regulated by more than a single transcription factor (TF). Multiple TFs work in concert to achieve tissue specificity. In order to explore these complex TF interaction networks, we performed a large-scale analysis of TF interactions for 30 human tissues. We first identified tissue-specific genes for 30 tissues based on gene expression databases. We then evaluated the relationships between TFs using the relative position and co-occurrence of their binding sites in the promoters of tissue-specific genes. The predicted TF–TF interactions were validated by both known protein–protein interactions and co-expression of their target genes. We found that our predictions are enriched in known protein–protein interactions (>80 times that of random expectation). In addition, we found that the target genes show the highest co-expression in the tissue of interest. Our findings demonstrate that non-tissue specific TFs play a large role in regulation of tissue-specific genes. Furthermore, they show that individual TFs can contribute to tissue specificity in different tissues by interacting with distinct TF partners. Lastly, we identified several tissue-specific TF clusters that may play important roles in tissue-specific gene regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.