Abstract

Sugar alcohols are one promising candidate for phase-change materials (PCMs) in energy industrial societies because of their large thermal storage capacity. In this paper, we investigate the melting point and enthalpy of fusion related to the thermal storage of six-carbon sugar alcohols (galactitol, mannitol, sorbitol, and iditol) by molecular dynamics simulations and elucidate physical principles required for new PCM design. The computational melting points and enthalpies of fusion reproduce the experimental trend qualitatively. On the basis of the energy decomposition analysis we find that their enthalpies of fusion originate mainly from the decrease in the number and strength of intermolecular hydrogen bonds upon melting. Furthermore, we examine the origin of the difference of enthalpy of fusion between the four isomers. The results show that the larger enthalpy of fusion of galactitol and mannitol comes from their stable solid phases associated with the absence of notable repulsive electrostatic inter...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.