Abstract

Optically controlled RF switches with a novel non-contact device architecture that achieves high performance in the millimeterwave-to-terahertz (mmW-THz) region are proposed and investigated through simulation. The significant change in conductivity in semiconductors caused by photogenerated carriers is used to develop RF switches having very high performance. By including a thin layer of insulator between the active semiconductor material and the metal contacts, the carrier concentration can be enhanced over that of conventional devices. For a prototype demonstration, G-band coplanar waveguide-based optical switches (using Si and Ge as active materials) with different contact geometries have been modeled and simulated. The proposed switches outperform both conventional solid-state switches and phase-change material-based switches in the switch figure-of-merit, and are promising for developing a novel class of tunable and reconfigurable mmW-THz circuits for advanced sensing, imaging, and communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call