Abstract
The MYC proto-oncogene encodes a basic helix-loop-helix leucine zipper (HLH-LZ) transcription factor, acting as a master regulator of genes involved in cellular proliferation, differentiation, and immune surveillance. Dysregulation of MYC is implicated in over 70% of human cancers, driving oncogenic processes through altered gene expression and disrupted cellular functions. Non-synonymous single nucleotide polymorphisms (nsSNPs) within coding regions can significantly impact protein structure and function, leading to abnormal cellular behaviours. This study employed 29 in silico tools to systematically evaluate the deleteriousness of nsSNPs within the MYC gene. These tools assessed the variants' effects on protein structure, disease association, functional domains, and post-translational modification sites. This study investigated if these variants may disrupt protein-protein interactions, critical for MYC's oncogenic roles and normal cellular functions. Our analysis identified 21 nsSNPs that were predicted to be deleterious and pathogenic. These variants correspond to residues D63H, D63Y, P74L, P75L, N375D, N375I, E378K, E378Q, E378A, E378G, E378V, R379P, R381K, R381T, R382W, L392P, R393C, R393H, R393P, L411H, and L411P. Stability assessments indicated that these variants could destabilise the MYC protein. None of the variants affected post-translational modifications. Protein-protein interaction and docking analysis revealed that variants within bHLH and LZ domains may disrupt MYC/MAX binding, potentially impacting MYC's oncogenic activity and transcriptional regulation. This computational assessment enhances our understanding of genetic variations within the MYC gene and prioritises candidate nsSNPs for experimental validation and therapeutic exploration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.