Abstract

Microencapsulated phase change materials have been widely used as filler material to develop thermoregulating textile composites. Phase change material has unique property of latent heat that can absorb and release energy over constant temperature range. In this work a method is developed to predict the effective thermal conductivity of microencapsulated phase change material coated composite woven fabrics via finite element analysis. For this purpose unit cell of microencapsulated phase change materials as coated material and woven fabrics were developed and analysed by applying different boundary conditions. Validation of the models was carried out on the basis of strong correlation in effective thermal conductivity values of the microencapsulated phase change materials coated composite fabrics between experimental results and the predicted results from post-processing calculation by finite element method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.