Abstract

In the last decade, microencapsulated phase change material (MPCM) slurries have been proposed and studied as novel coolants for heat transfer applications. Such applications include electronics cooling, and secondary coolants in air conditioning systems among others. Experiments have shown that MPCM’s increase the overall thermal capacity of thermal systems by taking advantage of the phase change material’s latent heat of fusion. However, research has also shown that the overall heat transfer coefficient is diminished due to a reduction in the effective thermal conductivity and increased viscosity of the slurry. For this reason, there is an urgent need to modify the content of microcapsules containing phase change material to increase their effective thermal conductivity and the overall heat transport process. Our solution consists of increasing the thermal conductivity of MPCM by adding carbon nanotubes to the shell and core of the microcapsules. Carbon nanotubes have shown to increase the thermal conductivity of liquids by 40% or more in recent experiments. In this paper, MPCM slurry containing octadecane as phase change material and multi-wall carbon nanotubes (MWCNTs) embedded in the capsule material and core are compared with pure water as heat transfer fluid. Thermal and physical properties of MPCM slurry containing carbon nanotubes were determined using a differential scanning calorimeter and concentric viscometer, respectively. Experimental convective heat transfer coefficient data for MWCNT aqueous suspensions under laminar flow and constant heat flux were determined using a bench-top heat transfer loop. Experimental heat transfer results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.