Abstract

This work deals with a computational analysis and quantification of the influence of processing (primarily crack-like) defects of various amount on the (tensile) strength of open cell ceramic foam structures. This information is essential e.g. for application of these materials in the mechanically loaded application, where a design with certain reliability to operating conditions is required. The analysed ceramic foam structures are composed of both regular and irregular cells and crack-like defects (pre-cracked struts) are simulated inside them. The foam structure is modelled using a 3D FE beam element based model created by utilization of the Voronoi tessellation technique. The tensile strength upon presence of various amount of pre-cracked struts is analysed based upon an iterative FE simulation on whose base the critical failure force leading to specimen fracture is determined. The performed parametric study relates the tensile strength of the foam structure to the amount of initial defects. With increasing amount of these defects, the foam strength decreases by approximately 30% with every 10% of broken struts. This information can be directly used for a fast estimation of the foam tensile strength if the fraction of broken struts to the intact ones is known (e.g. from a microscopic analysis).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.