Abstract

The swift advancement of heat transfer technologies can be attributed to the growing need for effective heating and cooling systems in various sectors, including the automotive, chemical, and aerospace industries. This work aims to examine the impact of radiation on the behavior of Casson hybrid nanoparticles (Al2O3-CuO) mixed convective flow in three distinct scenarios. The physical properties of copper oxide (CuO) and aluminum oxide (Al2O3) nanoparticles are utilized when mixed with CMC-water as the solvent. This paper aims to analyze the influence of mixed convective flow on the thermal integrity of hybrid nanoparticles when subjected to a wedge, cone, and plate. The analysis of chemical reactions and the existence of a permeable substance is also incorporated. The partial differential systems are appropriately transformed into a system of ordinary differential equations (ODEs). In addition, the calculation of this system of ODEs is carried out using the analytical technique known as the homotopy analysis approach (HAM). The study examines potential resolutions for flow issues in three distinct configurations: wedge, cone, and plate. A comprehensive examination and record of the impacts of various physical characteristics is carried out. The concepts of wall friction, Nusselt number, and Sherwood number, among others, are explained through the utilization of graphical representations. The porosity and Casson fluid characteristics cause a decrease in the performance of the velocity profile. Hybrid nanofluids have superior heat transfer efficiency compared to conventional nanofluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.