Abstract
Intravascular tracer washout data obtained from gastrocnemius muscle of lean Zucker rats (LZRs) and obese Zucker rats (OZRs) were analysed to investigate flow distributions in the OZR, a model of non-atherosclerotic peripheral vascular disease. A computer model used to simulate the network washout curves was developed based on experimentally observed relative dispersions in large vessels and asymmetrical flow distributions at bifurcations in dichotomous microvascular networks. The model results of simulations were compared to experimental washout data of (125)I-labelled albumin, an intravascular tracer, to uncover flow distributions on the arterial-network and capillary levels. The lean and obese Zucker rats demonstrated distinct capillary-level flow distributions, with higher dispersion and significantly more low-flow capillaries in the OZRs than in the LZRs. Targeted pharmacological treatments against identified sites of vascular dysfunction in OZRs (adrenoreceptor blockade with phentolamine, antioxidant treatment with Tempol and thromboxane receptor antagonism with SQ-29548) were shown to improve the capillary-level flow distributions in treated OZRs toward distributions determined in control LZRs. Combination therapy with multiple pharmacological interventions resulted in a greater degree of recovery. This study demonstrates that the enhanced perfusion heterogeneity at arteriole bifurcations is a potential mechanism underlying perfusion-demand mismatching in OZRs, and suggests that amelioration of this dysfunction must involve a multi-faceted interventional approach.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have