Abstract
To increase the operational life of defected structures, a repairing method using composite patches has been used to reinforce cracked components. Due to various advantages of composite materials, this method has received much attention from researchers and engineers. Considerable investigations have been performed to highlight the effect of bonded composite patches on the fracture parameters such as stress intensity factors (SIF) and J-integral. However the effect of composite patches on the T-stress, the constant stress term acting parallel to the crack, has not been investigated in the past. In this paper, the finite element method is carried out to analyze the effect of bonded composite patches for repairing cracks in pure mode I and also mixed mode I/II conditions, by computing the stress intensity factors and the T-stress, as functions of the crack length, the crack inclination angle and the type of composite material. In pure mode I condition, the finite element analysis is carried out for three different specimens: centre crack, double edge crack and single edge crack specimens. For mixed mode I/II condition the analysis is conducted on an inclined central crack of various slant angles. For both pure mode I and mixed mode I/II, the numerical results show that composite patching has considerable effect on the T-stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.