Abstract
Most integrals in Localised Boundary Domain Integral Equations (LBDIEs) comprise singularities. This paper aims to produce numerical solutions of the LBDIEs for the Partial Differential Equations with variable coefficients. The singularities of the boundary integrals in LBDIEs will be handled by using a semi-analytic for logarithmic singularity and a semi-quadratic analytic method for r−2 singularity. Whereas the singular domain integrals are handled by using the Duffy transformation. The LBDIEs that we consider are associated with the Neumann problem, which can be solved with a condition. If it can be solved, the solution is, however, unique up to an additive constant. We add a perturbation operator to the LBDIEs to convert the LBDIE to a uniquely solvable equation. The perturbed integral operator leads the perturbed LBDIEs to a dense matrix system that disable the use of methods in solving sparse matrix system. We solve the system of linear equations by Lower-Upper (LU) decomposition method. The numerical results indicate that high accuracy results can be attained. It gives the impression that the methods we use in this numerical experiment are reliable in handling the boundary and domain singular integrals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.