Abstract

This study evaluates low Reynolds number models of turbulence for numerical computations on the heat transfer and fluid flow behavior in a rectangular channel with streamwise‐periodic ribs mounted on one of the principal walls. The models include k − ε models of Launder and Sharma (1974), Chien (1982), k − ε model of Lin and Hwang (1998), Wilcox’s k−ω model (Wilcox, 1994) and Durbin’s model k − ε −v2 (Durbin, 1995). The numerical results show that all these models can predict the flowfield reasonably well, and the inclusion of the Yap term (Yap, 1987) in the ε – equation (or ε – equation) can further improve the prediction in these k − ε models, k − ε model and k − ε − v2 model. However, these models behave differently in heat transfer computations. The k − ω model leads to too low a level of heat transfer and turbulence. Among these k − ε models and the k − ε model, Lin’s model with the Yap term predicts the heat transfer level best. Durbin’s model with extra v2, f equations and the Yap term exhibits further improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.