Abstract

To enhance the flexibility of the parallel FDTD for the analysis of the bio-electromagnetic problems, a universal and efficient interpolation technique based on the super-absorbing boundary principle is presented, which can improve the interpolation accuracy and ensure the stability of the parallel FDTD iterative procedure. Using this technique, we calculate the SAR (Specific Absorption Rate) values in the head for two different human-body postures. In the iteration procedure of parallel FDTD, the data are exchanged between adjacent subdomains with the interpolation technique. Thus, the meshes can be created in local coordinates, which makes it convenient to build the human model in the different posture and use position for FDTD computing. The results show that the change of human-body posture only brings about a slight decrease (within 6.8%) in the peak SAR values, whereas the SAR values in the brain, as a critical organ, are sensitive to the change of the body posture, and it increases by 28% at maximum for the 1-g averaged peak SAR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call