Abstract
This article considers a backscatter-aided wireless powered mobile edge computing (BC-aided WPMEC) network, in which the tasks data of each Internet of Things (IoT) device can be computed locally or offloaded to the MEC server via backscatter communications, and design a resource allocation scheme regarding the weighted sum computation bits (WSCB) maximization of all the IoT devices. Towards this end, by optimizing the mobile edge computing (MEC) server’s transmit power, IoT devices’ power reflection coefficients, local computing frequencies and time, the time allocation between the energy harvesting and task offloading, as well as the binary offloading decision at each IoT device, we built a WSCB maximization problem, which belongs to a non-convex mixed integer programming problem. For solving this, the proof by contradiction and the objective function’s monotonicity are considered to determine the optimal local computing time of each IoT device and the optimal transmit power of the MEC server, and the time-sharing relaxation (TSR) is adopted to tackle the integer variables, which are used to simplify the original problem. Then, we decouple the simplified problem into two sub-problems by means of the block coordinate decent (BCD) technology, and each of the sub-problems is transformed to a convex one by introducing auxiliary variables. Based on this, we design a two-stage alternative (TSA) optimization algorithm to solve the formulated WSCB problem. Computer simulations validate that the TSA algorithm has a fast convergent rate and also demonstrate that the proposed scheme achieves a higher WSCB than the existing schemes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have