Abstract

Metal hydrides have been investigated for use in environmentally friendly heat pumps. These systems operate using reversible adsorption and desorption of hydrogen from metallic compounds and can be incorporated in a cycle having a work input (compressor) or thermal energy input (generator). Some challenges faced by compressor driven metal hydride heat pumps are poor heat transfer in the metal hydride beds and high compressor discharge temperatures. To overcome these challenges, this article investigates the use of a metal-hydride slurry in conjunction with various isothermal compression techniques. Liquid-flooded, electrochemical, and liquid piston compressors were modeled and integrated into a system model in order to assess their impact on the performance of the slurry-based metal hydride heat pump system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.