Abstract

In several applications, such as wideband spectrum sensing for cognitive radio, only the power spectrum (a.k.a. the power spectral density) is of interest and there is no need to recover the original signal itself. In addition, high-rate analog-to-digital converters (ADCs) are too power hungry for direct wideband spectrum sensing. These two facts have motivated us to investigate compressive wideband power spectrum sensing, which consists of a compressive sampling procedure and a reconstruction method that is able to recover the unknown power spectrum of a wide-sense stationary signal from the obtained sub-Nyquist rate samples. The task oriented brain activity analysis and classification is a prime issue in EEG signal processing. The similar attempt has been done here to estimate the brain activity on the basis of power spectrum analysis. For this, the modified approach involving both Independent Component Analysis (ICA) and Principal Component Analysis (PCA) methodologies has been used in this paper to investigate the behavior of brain's electrical activity for a simple case of visual attention.The input EEG signals are analyzed with the aid of Fast Independent Component Analysis (FastICA), a Statistical Signal Processing Technique, to obtain the components related to the detection of epileptic seizures. The BackPropagation Neural Network is trained with the obtained components for effective detection of epileptic seizures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.