Abstract
As timber tends to be weak against the load perpendicular to grains, it can be important to study the consequences of applying loads perpendicular to larch cross-laminated timber (CLT) composed of multiple larch laminae. Compression tests were conducted perpendicular to the in-plane and out-of-plane grains of Japanese larch CLT. Out-of-plane average compressive strength, average yield strength, and average compressive stiffness perpendicular to the grain of the larch CLT were 11.94 N/mm2, 7.30 N/mm2, and 7.30 N/mm3, respectively, whereas the in-plane average compressive strength, average yield strength, and average compressive stiffness perpendicular to the grain of the larch CLT were 21.48 N/mm2, 21.18 N/mm2, and 18.72 N/mm3, respectively. The in-plane compressive strength and yield strength showed a statistically significant relationship with the density of CLT, the modulus of elasticity measured by longitudinal vibration (MOELV), and the average MOELV of the laminae constructing the cross-laminated timber. The in-plane yield strength was affected by the MOELV of the outer laminae and the average MOELV of the larch cross-laminated timber. The compressive strength properties were most affected by the loading surface of the CLT. The variation between the moisture content and compressive strength properties of the CLT, however, was not statistically significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.