Abstract

Different types of wood can be used for making cross-laminated timber (CLT), which is useful as a structural material. Therefore, to assess the viability of mixed cross-laminated timbers prepared with different adhesives, their compressive strength performances were evaluated. Laminae of Japanese larch, red pine, and yellow poplar were used to manufacture eight types of mixed CLTs, which were then tested in a universal testing machine for obtaining the compressive strength. The results were then compared to those obtained from the finite element (FEM) simulation of the CLTs at proportional limit load. The compressive strength of CLTs consisting of Japanese larch laminae, with a high modulus of elasticity, tended to increase. Mixed CLT with polyurethane adhesives showed an average compressive strength that was 14% lower than that of larch CLT, while mixed CLT consisting of red pine and yellow poplar showed an average compressive strength that was 18% lower than that of the larch CLT. The CLT prepared with phenol-resorcinol-formaldehyde adhesive yielded the highest compressive strength among the three adhesives. The FEM-predicted strengths were found to be close to the actual values in all specimens. The obtained results will be useful for selecting material and adhesive for future endeavors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call