Abstract

Compressive sensing (CS) of high-order data such as hyperspectral images, medical imaging, video sequences, and multi-sensor networks is certainly a hot issue after the emergence of tensor decomposition. Actually, the reconstruction accuracy with current algorithms is not ideal in some cases of noise. In this paper, we propose a new method that can recover noisy 3-D images from a reduced set of compressive measurements. First, multi-way compressive measurements are performed using Gaussian random matrices. Second, the mapping relationship between the variance of noise and the reconstruction threshold is found. Finally, the original images are recovered through reconstruction of pseudo inverse based on threshold selection. We experimentally demonstrate that the proposed method outperforms other similar methods in both reconstruction accuracy (within a range of the compression ratios and different variances of noise) and processing speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.