Abstract
Compressed sensing (CS) exploits the sparsity of a signal in order to integrate acquisition and compression. CS theory enables exact reconstruction of a sparse signal from relatively few linear measurements via a suitable nonlinear minimization process. Conventional CS theory relies on vectorial data representation, which results in good compression ratios at the expense of increased computational complexity. In applications involving color images, video sequences, and multi-sensor networks, the data is intrinsically of high order, and thus more suitably represented in tensorial form. Standard applications of CS to higher-order data typically involve representation of the data as long vectors that are in turn measured using large sampling matrices, thus imposing a huge computational and memory burden. In this chapter, we introduce Generalized Tensor Compressed Sensing (GTCS)—a unified framework for compressed sensing of higher-order tensors which preserves the intrinsic structure of tensorial data with reduced computational complexity at reconstruction. We demonstrate that GTCS offers an efficient means for representation of multidimensional data by providing simultaneous acquisition and compression from all tensor modes. In addition, we propound two reconstruction procedures, a serial method (GTCS-S) and a parallelizable method (GTCS-P), both capable of recovering a tensor based on noiseless or noisy observations. We then compare the performance of the proposed methods with Kronecker compressed sensing (KCS) and multi-way compressed sensing (MWCS). We demonstrate experimentally that GTCS outperforms KCS and MWCS in terms of both reconstruction accuracy (within a range of compression ratios) and processing speed. The major disadvantage of our methods (and of MWCS as well) is that the achieved compression ratios may be worse than those offered by KCS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.