Abstract

We construct and implement a compressive sensing measurement matrix based on improved size-compatible (ISC)-array low-density parity-check (LDPC) code. First, we propose an improved measurement matrix from the array LDPC code matrix. The proposed measurement matrix retains suitable quasi-cyclic structures and supports arbitrary code lengths. It also achieves a high perfect recovery percentage compared with a Gaussian random matrix of the same size. Second, we propose a hardware scheme using cycle shift registers to design the compressive sensing measurement matrix generator. This provides simple circuit architecture during the generation of the measurement matrix. According to simulation verifications, the measurement matrix construction method is effective and entails fewer shift registers and a lower area overhead by using a simplified hardware implementation scheme. The compressive sensing measurement matrix generator can generate all of the required elements in the ISC-array LDPC code matrix with an acceptable hardware overhead. Therefore, it can be widely applied to large-scale sparse signal compressive sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.