Abstract

Electron beam melting (EBM) is a direct metal additive manufacturing technique in which a 4 kW electron beam is utilized to manufacture the parts in a layer by layer fashion. This paper represents an investigation into the quasi-static compressive deformation behavior of EBM made specimens. The mechanical testing was carried out at strain rate of 10-3 s-1 by a numerically controlled hydraulic MTS machine on both as-built and machined samples manufactured by this high-tech process. The Vickers micro-hardness of the samples has been measured before and after the compression test. The microstructure of the compressed sample was characterized. The particle size distribution, morphology, and chemical composition of the Ti6Al4V, which is one of the most common materials for biomedical implants because of its high strength to weight ratio, corrosion resistance, and its biocompatibility features, have been investigated. The fracture surface has been characterized by scanning electron microscope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.