Abstract
Open-cell metal foams suffer from severe deterioration in mechanical properties due to their enriched three-dimensional interconnected holes. In this paper, reinforcing copper pillar(s) or tube(s) are embedded into the foam matrix to form “composite” structure to enhance the open-cell copper foams. To do this, a simple positioning device is designed for preparation of the green porous copper aligned with directional through hole(s) based on a tapping method. Then the reinforcing pillar(s) or tube(s) are inserted into the hole(s) and sintered together. By this means, the mechanical properties of the copper foams are significantly improved. The energy absorption capacity of the composite foams has also been improved because of a higher and wider yield platform compared with the unreinforced copper foams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.