Abstract

As-cast AM60 magnesium alloy was solid dissolved with exercising different pressures (atmospheric-pressure, 3, 4 and 5 Gpa) to it and subsequently aged for 10 h at 200 °C under atmospheric-pressure. The aging alloys were characterized by optical microscope, and their compressive properties were investigated by a Gleeble-3500 hot-stimulation machine. The results show that, compared with exercising atmospheric-pressure during solution treatment, exercising high-pressure during this process causes that the α-Mg grains of the subsequent aging alloy are more fine and uniform, while the β-Mg17Al12 phases transform into fine particles and aggregate to form gobbets or strips. With increasing the pressure gradually, the compressive strength of the aging alloy increases up to 4 Gpa and then decreases, while the maximum plastic strain decreases up to 4 Gpa and then increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call