Abstract

Porous biodegradable polymeric scaffolds are developed by physically blending two different kinds of biodegradable polymers, PCL, and PLLA, for application in tissue engineering. The main objective of the development of this material is to control the mechanical properties, such as, elastic modulus and strength. The results from mechanical testing showed that the compressive mechanical properties of PCL/PLLA scaffold can be varied by changing the blend ratio. It also showed that these properties can be well predicted by the rule of mixture. The primary deformation mechanism of the scaffolds was found to be localized buckling of struts surrounding the pores. Localized ductile failure caused by PCL phase tends to be suppressed with increasing PLLA content. The immiscibility of PCL and PLLA caused the phase-separation morphology that strongly affected the macroscopic mechanical properties and the microscopic deformation behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call