Abstract
Photocatalytic hydrogen peroxide (H2O2) generation is largely subject to the sluggish conversion kinetics of the superoxide radical (O2⋅-) intermediate, which has relatively low reactivity and requires high energy. Here, we present a lattice-strain strategy to accelerate the conversion of O2⋅- to highly active singlet oxygen(1O2) by optimizing the distance between two adjacent active sites, thereby stimulating H2O2 generation via low-barrier oxygen-oxygen coupling. As the initial demonstration, the defect-induced strain in ZnIn2S4 nanosheet optimizes the distance of two adjacent Zn sites from 3.85 to 3.56Å, resulting in that ZnIn2S4 with 0.7% compressive strain affords 3086.00μmolg-1h-1 yield of H2O2 with sacrificial agent. This performance is attributed to the strain-induced enhancement of electron coupling between the compressed adjacent Zn sites, which promotes low-barrier oxygen-oxygen coupling to active 1O2 intermediate. This finding paves the way for atomic-scale manipulation of reactive sites, offering a promising approach for efficient H2O2 photosynthesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have