Abstract

The lattice structures are a particular type of structures made by the multiply of a unit cell. In addition, their structure is close to some physiological tissues and bone structure, which can allow their use to develop prostheses needed to the rehabilitation or replacement of a body part. Lattice structures are widely used in various engineering applications due to their high weight-to-strength ratio and exceptional energy absorbing performance. The feasibility of using different base materials to fabricate these cellular structures with complex geometries has been significantly widen with the development of additive manufacturing (AM) technology. Additive manufacturing in particular metal selective laser melting (SLM) processes are rapidly being industrialized. In this work, samples with different lattice structures were manufactured by SLM technique using CoCr powder alloy. Compression tests were carried out to characterize their mechanical behavior. Starting from a BCC lattice cell measuring 5x5x5mm and 1mm diameter of the strut, were designed using Catia V5 R19 software. The BCC lattice unit cell consists of 4 solid struts with circular cross-section by which they intersected at 45°angle and modify by adding radius at the intersection of all four struts, furthermore the empty space is filled with BCC cell to increase the stiffens of the structure. The BCC cell was duplicate in three directions (X, Y, Z) measuring 20mm in each direction. To obtain the final part the BCC structure ware intersected with a cylindrical part measuring 20mm in Z direction, 15mm diameter and 1mm wall thickness, resulting a cylindrical part with three different BCC lattice structure inside.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call