Abstract

Selective laser melting and other additive manufacturing (AM) techniques have recently attracted substantial interest of both researchers and the processing industry. The freedom of design leads to completely new possibilities for constructions and, thus, to entirely new products. In the selective laser melting (SLM) process, the components are produced layer-wise using a laser beam. SLM is a powder bed based AM process and is characterized by the complete melting of the utilized powder material. Employing SLM, complex three-dimensional parts and light weight structures can be produced directly from 3D CAD data. However, although SLM is a very promising technology, there are still challenges to solve. In the present study, a close look is taken at the porosity. Under cyclic loading, pores can act as stress raisers and lead to premature crack initiations, which reduce the fatigue strength of the material. Hot isostatic pressing (HIP) offers the possibility to reduce the porosity. HIP combines high pressure and high temperature to produce materials with superior properties. The influence of the HIP process parameters on the density and microstructure of IN718 SLM components is investigated by means of micro X-ray computed tomography and scanning electron microscopy. The results of the experiments show that the majority of pores can be densified by means of HIP. On the other hand, some pores cannot be densified. The reason for this is seen in entrapped argon gas from the SLM process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call