Abstract

Robust and efficient foreground extraction is a crucial topic in many computer vision applications. In this paper, we propose an accurate and computationally efficient background subtraction method. The key idea is to reduce the data dimensionality of image frame based on compressive sensing and in the meanwhile apply sparse representation to build the current background by a set of preceding background images. According to greedy iterative optimization, the background image and background subtracted image can be recovered by using a few compressive measurements. The proposed method is validated through multiple challenging video sequences. Experimental results demonstrate the fact that the performance of our approach is comparable to those of existing classical background subtraction techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.