Abstract

Background subtraction is a key step in a wide spectrum of video applications, such as object tracking and human behavior analysis. Compressive sensing-based methods, which make little specific assumptions about the background, have recently attracted wide attention in background subtraction. Within the framework of compressive sensing, background subtraction is solved as a decomposition and optimization problem, where the foreground is typically modeled as pixel-wised sparse outliers. However, in real videos, foreground pixels are often not randomly distributed, but instead, group clustered. Moreover, due to costly computational expenses, most compressive sensing-based methods are unable to process frames online. In this paper, we take into account the group properties of foreground signals in both spatial and temporal domains, and propose a greedy pursuit-based method called spatio-temporal group sparsity recovery, which prunes data residues in an iterative process, according to both sparsity and group clustering priors, rather than merely sparsity. Furthermore, a random strategy for background dictionary learning is used to handle complex background variations, while foreground-free training is not required. Finally, we propose a two-pass framework to achieve online processing. The proposed method is validated on multiple challenging video sequences. Experiments demonstrate that our approach effectively works on a wide range of complex scenarios and achieves a state-of-the-art performance with far fewer computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.