Abstract

[1] The seismic structure of the continent-ocean transition (COT) at magma-poor rifted margins can explain geological processes leading to continental breakup. At the Newfoundland-Iberia rift, compressional seismic velocity (Vp) is interpreted with multichannel seismic reflections and drilling results to document continental crustal stretching and thinning, exhumation of the mantle, and incipient seafloor-spreading. However, Vp cannot uniquely constrain COT geology. We present an updated 2-D model for Vp and a new shear-wave velocity model (Vs) for SCREECH Line 2 on the Newfoundland margin using multichannel seismic reflections and coincident ocean-bottom seismometer refraction data. In shallow COT basement we find Vp / Vs ratios average 1.77, which is normally too high for upper continental crust and too low for serpentinized mantle. This observation can be explained by stretching of a mafic middle and/or lower continental crust into the COT. We further support the presence of hydrated mantle peridotites at depth during rifting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.