Abstract

Tucker decomposition is proposed to reduce the memory requirement of the far-fields in the fast multipole method (FMM)-accelerated surface integral equation simulators. It is particularly used to compress the far-fields of FMM groups, which are stored in three-dimensional (3-D) arrays (or tensors). The compressed tensors are then used to perform fast tensor-vector multiplications during the aggregation and disaggregation stages of the FMM. For many practical scenarios, the proposed Tucker decomposition yields a significant reduction in the far-fields' memory requirement while dramatically accelerating the aggregation and disaggregation stages. For the electromagnetic scattering analysis of a 30{\lambda}-diameter sphere, it reduces the memory requirement of the far-fields more than 87% while it expedites the aggregation and disaggregation stages by a factor of 15.8 and 15.2, respectively, where {\lambda} is the wavelength in free space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.