Abstract

This paper firstly employs the fast multipole method (FMM) to accelerate the singular boundary method (SBM) solution of the Stokes equation. We present a fast multipole singular boundary method (FMSBM) based on the combination of the SBM and the FMM. The proposed FMSBM scheme reduces CPU operations and memory requirements by one order of magnitude, namely O(N) (where N is the number of boundary nodes). Thus, the strategy overcomes costly expenses of the SBM due to its dense interpolation matrix while keeping its major merits being free of mesh, boundary-only discretization, and high accuracy in the solution of the Stokes equation. The performance of this scheme is tested to a few benchmark problems. Numerical results demonstrate its efficiency, accuracy and applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call