Abstract
The present article is devoted to wavelet matrix compression for boundary integral equations when using anisotropic wavelet bases for the discretization. We provide a compression scheme for boundary integral operators of order 2q\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$2q$$\\end{document} on patchwise smooth and globally Lipschitz continuous mainfolds which amounts to only O(N)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {O}(N)$$\\end{document} relevant matrix coefficients in the system matrix without deteriorating the accuracy offered by the underlying Galerkin scheme. Here, N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$N$$\\end{document} denotes the degrees of freedom in the related trial spaces. By numerical results we validate our theoretical findings.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have