Abstract
The instantaneous variation of pressure loads acting on the rotors of positive displacement rotary blowers may produce vibrations and noise that in some case produce the failure of the machine and of the piping. In a previous paper the authors determined the pressure loads acting on the rotors, starting from the geometry of the chambers that are formed during the rotor meshing and the thermodynamic transformation of the working fluid. The calculation of the loads has been made in a quasi-static manner. In this paper the model has been improved by taking into account the effects due to a closed volume chamber at the discharge. This assumption better reproduces the real cases and allows the researchers to perform more efficient calculations and more reliable predictions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.