Abstract

The binary skutterudite CoP(3) has a large void at the body-centered site of each cubic unit cell and is, therefore, called a nonfilled skutterudite. We investigated its room-temperature compression behavior up to 40.4 GPa in helium and argon using a diamond-anvil cell. High-pressure in situ X-ray diffraction and Raman scattering measurements found no phase transition and a stable cubic structure up to the maximum pressure in both media. A fitting of the present pressure-volume data to the third-order Birch-Murnaghan equation of state yields a zero-pressure bulk modulus K(0) of 147(3) GPa [pressure derivative K(0)' of 4.4(2)] and 171(5) GPa [where K(0)' = 4.2(4)] in helium and argon, respectively. The Grüneisen parameter was determined to be 1.4 from the Raman scattering measurements. Thus, CoP(3) is stiffer than other binary skutterudites and could therefore be used as a host cage to accommodate large atoms under high pressure without structural collapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.