Abstract

Single crystals of the garnet Mn2+ 3Mn3+ 2[SiO4]3 and coesite were synthesised from MnO2-SiO2 oxide mixtures at 1000°C and 9 GPa in a multianvil press. The crystal structure of the garnet [space group Ia3¯d, a=11.801(2) A] was refined at room temperature and 100 K from single-crystal X-ray data to R1=2.36% and R1=2.71%, respectively. In contrast to tetragonal Ca3Mn3+ 2[GeO4]3 (space group I41/a), the high-pressure garnet is cubic and does not display an ordered Jahn-Teller distortion of octahedral Mn3+. A disordered Jahn-Teller distortion either dynamic or static is evidenced by unusual high anisotropic displacement parameters. The room temperature structure is characterised by following bond lengths: Si-O=1.636(4) A (tetrahedron), Mn3+-O=1.995 (4) A (octahedron), Mn2+-O=2.280(5) and 2.409(4) A (dodecahedron). The cubic structure was preserved upon cooling to 100 K [a=11.788(2) A] and upon compressing up to 11.8 GPa in a diamond-anvil cell. Pressure variation of the unit cell parameter expressed by a third-order Birch-Murnaghan equation of state led to a bulk modulus K 0=151.6(8) GPa and its pressure derivatives K′=6.38(19). The peak positions of the Raman spectrum recorded for Mn2+ 3Mn3+ 2[SiO4]3 were assigned based on a calderite Mn2+ 3Fe3+ 2[SiO4]3 model extrapolated from andradite and grossular literature data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.